Making a Difference With

Co-op Basics

Customer owned

- Serve 34 million consumers in 46 states → 75 percent of nation's area
- 2.3 million miles of line is close to half of nation's total

Moreover ...

- Growth rate <u>twice</u> that of IOU Electrics
- Six customers per line-mile ...vs... 33 for IOU
- Co-ops view DP as needed solution; not a "Problem"

CRN's Four Technology Units

- Automation, Telecommunications, and Information Technology
- Distribution Operations
- Marketing and Energy Services
- Power Supply

Co-op Tech Roadmap

- Ensure technology investments are aligned with cooperative business network strategies
- Provide framework for building R&D partnerships with other organizations
- Expand the (EPRI) electricity roadmap, which supports electric industry but does not address challenges unique to co-ops
- Align co-ops' interests with national interests

Projects Support the Roadmap

- MultiSpeak
- Demonstrations (fuel cells and microturbines)
- Technology Surveillance
- CRN Learning Center
- Renewable Energy Evaluations
- Key Account Tools and Technology
- Transmission Reliability

Research Meets DG Needs

- Understand the technology options
- Explore what your customers want
- Evaluate options for DG vs. grid services
- Demonstrate most attractive DG technology
- Establish reasonable business cases

DG Interconnection Tool Kit

- Business and Contract Guide for Interconnection, and Customer Guidelines for Interconnection
- Model Interconnection Application and two Model Interconnection Contracts
- DG Rates Manual
- Technical Application Guide

Broad Range of Programs

CRN Microturbine Demo Unit installed at Chugach / AVEC

Chugach EA's 1-MW PAFC Installation at Anchorage Post Office

DG Technologies Overview

Characteristics	Size (kW)	Current Installed Cost (\$/kW)	Electricity Cost (¢/kWh)*	Year Commercial	Applications
Internal Combustion Engine	50 to 5,000	\$200 to \$800	5.5¢ to 10.0¢	Available	Back-up Power, Peak Reduction
Wind Turbine	50 to 2,000	\$1,000 to \$1,500	5.5¢ to 15.0¢	Available	Green Power, Remote Locations
Microturbine	25 to 75	\$1,500 to \$2,500	10.0¢ to 15.0¢	Available	Peak Reduction, Back-up Power
Fuel Cell	5 to 2,000	\$3,000 to \$4,500	10.0¢ to 15.0¢	Commercial sizes available	Power Quality, Baseload, Premium Power
Solar Cell	1 to 100	\$1,500 to \$6,500	15.0¢ to 20.0¢	Available	Stock watering, Communications, Grid Independent

^{*} assuming fuel at \$5.50/natural gas

Cooperative Research Network, Winter 2001

NRECA/DOE Wind Outreach

- 3-year program (2002-2004)
- Tasks
 - -Regional Workshops
 - Summer 2002 Upper MidWest
 - Fall 2002 Nebraska
 - Information dissemination
 - -Technical support

Regional Workshops

- Provide insight in developing resources and wind system performance
- Responsive to the needs of the region
- Share cooperative experiences with wind power - both positive and negative
- Identify technical analysis and assistance activities

Wind Assessment: Lessons Learned

- Good siting and good wind data acquired by sitespecific wind measurement – are critical to the success of a wind project
- Utility management must be committed to the project –development, maintenance, and marketing
- There is a learning curve for both utilities (wind technology, warranty issues, etc.) and vendors (utility operations, requests for down payment, etc.)
- Not everything is going to work the first time expect there to be a process of debugging the equipment
- Why wind? satisfy customer needs, improve customer relationships, positive community relations tool, local economic development benefits

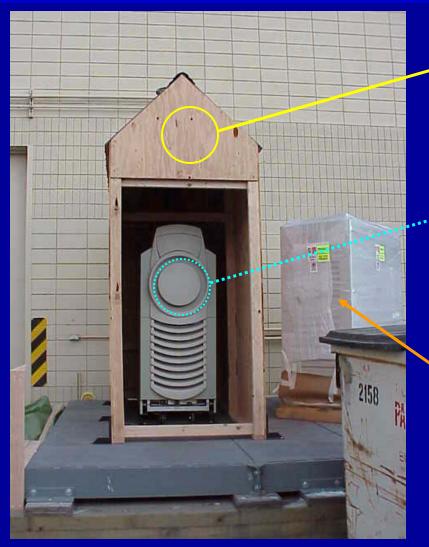
Information Needs

- Interconnection requirements
- Distribution system impacts/system protection/power quality
- Resource assessment
- Technical & economic feasibility
- Reliability, durability, longevity

- Installation and O&M costs
- Green power programs
- Project planning
- Market issues and transmission
- Intermittency
- Environmental issues
- Small wind turbines

Microturbine Program Objectives

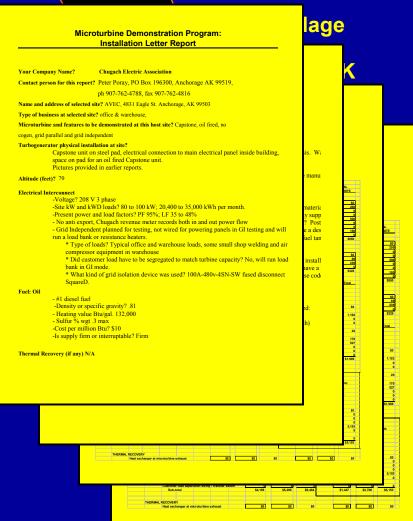
- Collect test and operation information on installation and performance by NRECA participants
- Identify developmental needs re: permitting, interconnection and building code compliance
- Identify developmental needs re: technology, maintenance and operation
- Provide technology baseline to benchmark future improvements


Co-op Participants

Demonstration Features

- Sound cross section of manufacturers
 - 5 Capstones
 - 2 Elliotts
 - 1 Honeywell
 - 1 Ingersoll-Rand
- Multiple fuels
 - Low pressure natural gas
 - Fuel Oil
 - Propane
- Thermal recovery
- Grid-Independent and Grid-Parallel operation
- Baseload and simulation of remote grid dispatch
- Simulation of SCADA integration

Gas Fired Capstone at Chugach Site

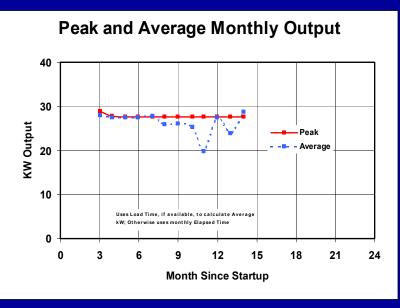

- Wooden enclosure halved troublesome tone noise to nearby residences
- Capstone now has a a silencer retrofit kit for inside the microturbine cabinet

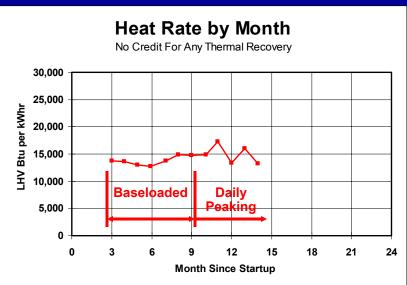
Oil fired Capstone awaiting installation

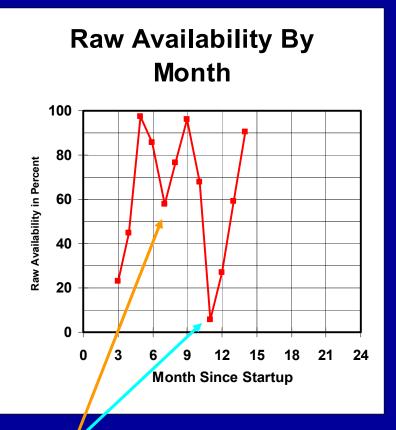
Photo courtesy of Chugach Electric Association Anchorage, AK

Typical Co-op Reporting (Chugach)

Site Installation Letter Report and Cost Spreadsheets


Interconnect

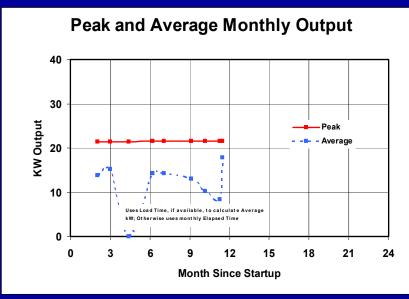

- 130 feet; 480 to 208 3-Ph via transformer
- 170 feet to new 15 psig NG, New oil tank
- Costs: Demo and Com'l

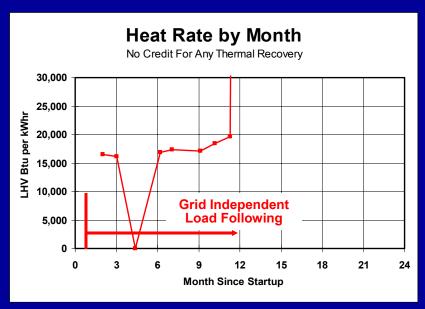

<u>1</u>	Natural Gas	Fuel Oil		
Actual Demonstration:				
Engineering	\$4,670	\$10,200		
Permitting	3,300	560		
Fuel	2,950	11,230		
Electrical	9,500	9,500		
Thermal Recovery	/ NA	NA		
Total	\$20,420	\$31,490		

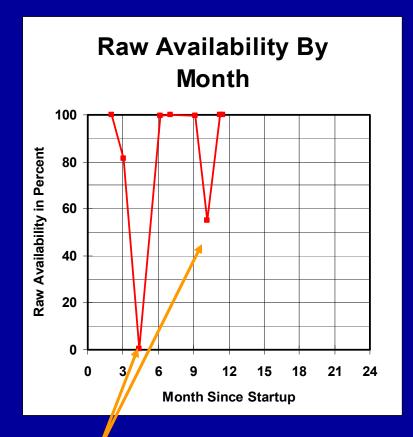
Projected if Full Commercial unit at customer site: \$8,250 \$18,120

Typical Co-op Reporting (Chugach)

Reduced availabilities due to replacements of Rotary Fuel Compressor, etc. New air bearing design should enhance availability.


Gas Fired Capstone at Cass County Site




CRN Demo Unit installed at Cass County

- Located at Holiday Inn in North Dakota
- Natural Gas at 11 psig -Runs Grid Independent
- Electric output powers an electric water heater!
- Thermal recovery is for additional water heating

Typical Co-op Reporting (Cass County)

Reduced availabilities due to replacements of Rotary Fuel Compressor, etc.

Technology Bottom Line

- No endemic technology failures to date (microturbine power assembly, recuperator, etc).
- Efficiencies about as represented.
- Capstone perhaps most "commercial" but all manufacturers beset by peripheral issues.
- Areas where design enhancements needed:
 - Fuel gas compressor likely to remain a high-maintenance item and energy consumer (~5 to 7% of kWh)
 - Limited motor start capability constrains Grid Independent use
 - Inverters may need more "hardening" relative to grid

Typical Equipment and Installation Costs

Doubling the Size: Reduces Equipment Cost per kW by 20%
Reduces Installation Cost Component per kW by 35%

How Does Cost Stackup?

Cost to Customer (Cents / kWh)

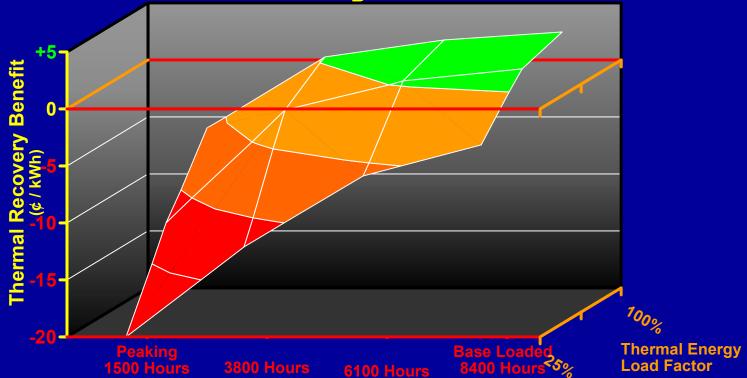
	Rural Co-op	IOU Electric	Customer Owned
Peaking @ 1,500 Hours per	year		
Owning Cost	14.3	20.3	24.6 to 34.2
\$6 /MilBtu NatGas* + 1.5¢ Maint	8.6	8.6	8.6
Total	22.9	28.9	33.2 to 42.8
BaseLoad @ 95% avail = 8,3	22 Hours per ye	ar	
Owning Cost	2.6	3.7	4.4 to 6.2
\$6 /MilBtu NatGas* + 1.5¢ Maint	8.6	8.6	8.6
Total	11.2	12.3	13.0 to 14.8

^{* \$1.20 /} gallon Fuel Oil is equivalent to \$8.65 per million Btu Natural Gas ...and... \$1.10 per gallon Propane is equivalent to \$12 per million Btu Natural Gas

Basis: Excludes cogeneration credit which at full thermal recovery could reduce busbar costs 2.5 ¢/kWh for gas price of \$6.00 per MilBtu.

\$1,100 / kW equipment plus \$275 / kW installation 10-Year equipment life 14,200 HHV Btu / kWh heat rate Maintenance at 1.5 cents per kWhr

14,200 HHV Btu / kWh heat rate Maintenance at 1.5 cents per kWhr

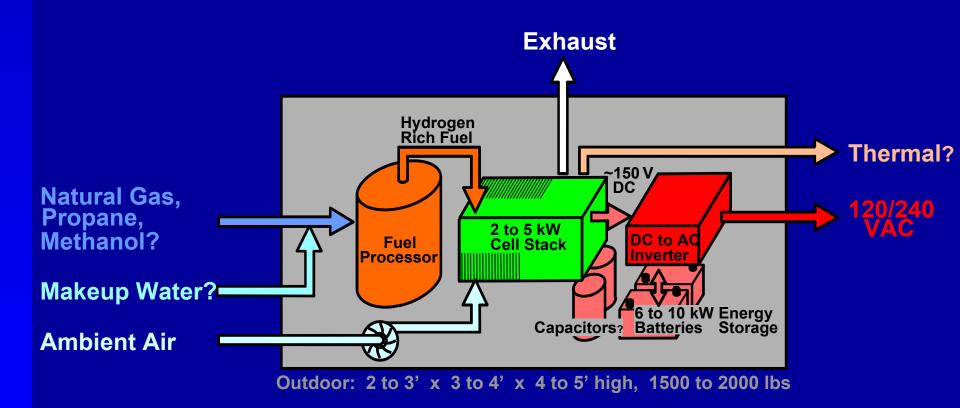

Deht is at 9% were applicable Utility ROF is 18%

Debt is at 9% were applicable Utility ROE is 18%

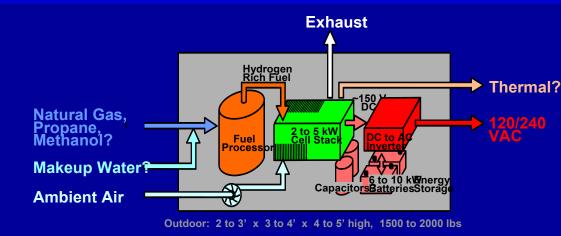
Customer Owned ROE is 25%→3.3 YrPayback Range is w w/o debt financing 7-Year MACRS for FIT where applicable No Investment Tax Credit

Combined FIT + StateIncomeTax rate is 41.5%

Thermal Recovery Attractiveness


- Thermal recovery Installation Cost can quickly spiral if every last Btu chased.

Basis: \$25,000 cost to install 330,000 Btu/Hour Thermal Recovery at a 60 kW microturbine site
Customer owns thermal recovery equipment and requires a 3.3 year payback
Displaced thermal use was fueled by \$6 natural gas at a 75 percent combustion efficiency


RFC Demonstration Objectives

- Ascertain key near-term / long-term DG benefits
- Identify and resolve critical DG implementation barriers
- Build solid foundation for co-op DG
- Benchmark Residential Fuel Cell (RFC) technology for further effort

Typical Demonstration Unit

Basic Issues

Issue is NOT will RFC's work but how long will they work

- Life and aging of cell stack
- Reformer life and response
- Inverter load following
- Reliability and maintainability

- ...and... Price / Markets?
 - Can Mfgr's deliver on production-cost curve
 - Application economics vs typical customer size
 - Market Profile

Co-op Participants

Program Summary

8 Co-op Participants

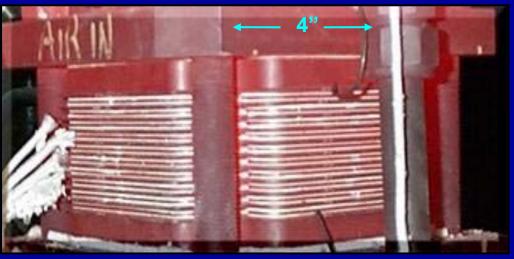
4Q 2001

1Q 2002

2Q 2002

3Q 2002

Multiple Manufacturers (Final Spectrum depends on Co-op Selections)


MANUFACTURER

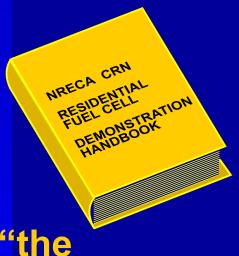
H Power Inter'nl Fuel Cells Plug Power Avista

Others

DEMONSTRATION CAPABILITY PROFILE

Early production, Energy Co-Opportunity
United Technology, Significant Reformer and FC tech
Substantial GE and joint venture funding, NG-GP First
Modular hot swappable cell substacks and inverters

Global Thermoelectric 1 kW Planar Cell Stack running at 1400°F


Typical RFC Early Entrance Markets

- Off-grid homes and other off-grid uses
 - Line extension or single phase service line is \$15,000 to \$20,000+ per mile
 - Difficult, or impossible, to secure right-of-ways in parts of country
- Home office users
 - Avoid snow or ice storm interruptions (Cost-effective digital satellite now available for telephone and www)
 - Avoid hurricane outages
- Partial power supply to outage sensitive office and other customers
- High income technophiles or "greens"
- "Green" or upscale housing developers

Already Accomplished

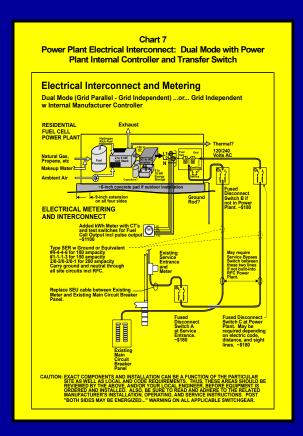
RFC DP Application Analysis — Demo Handbook

present

RFC

Bible"

Demonstration planning, installation, operation


Identify and manage application barriers including: electrical / fuel / water / thermal recovery / etc.

Includes Electrical Interconnect:

- Types, analysis, and Issues (GP GI DualMode)
- Interconnect and PQ verification procedures
- Thermal recovery (CHP) applications, integration, and benefits
- Data collection / instrumentation protocols
- Assess market and application issues

Already Accomplished (cont'd)

Typical Issues and Barriers Identified and Being Worked

- Grid Parallel export of power at night
- Remote disconnect / SCADA need
- Disconnects and location re code
- Inverter-to-Dwelling fault clearing
- Motor start capability
- etc
- Required fuel pressure vs codes
- Propane odorant level and variation
- Thermal recovery RFC loop vs safety/ codes
- etc

Interconnect Issues

Islanding

- Compare manufacturers' specs with co-op requirements
- Perform validation testing
- Monitor inverter performances

General Issues

- Near-term: Unlikely to be significant
- Long-term: Significant only for high RFC saturations and/or "help the grid" operations

Fuel Cell Experience

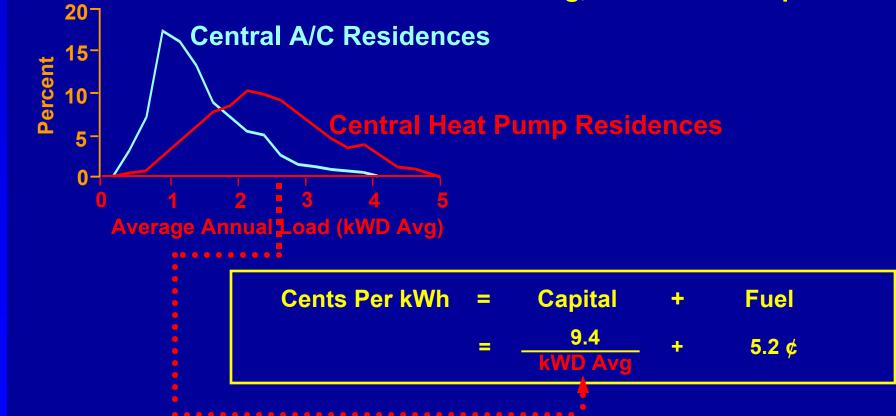
Over 200 ONSI 200 kW phosphoric-acid fuel cells worldwide logged millions of hours of reliable grid interconnection

500

Grid Upset at 70 millisecond mark **Inverter Output Grid Voltage Current** Ph A Ph B Ph C Ph A Ph B Ph C 100 200 300 400

Inverter interrupts and stops grid-following power export, waits 350 milliseconds to allow the grid to return to normal

Economics Best Cases


- \$4,000 Installed Cost
- 10-Year Life @ 9 percent Cost of Capital

\$625 /yr

Service Calls @ \$200 each

\$200 /yr

- \$5 Natural Gas = $5.2 \, \text{¢}$; \$1.00/gal Propane = 11.1 ¢
- Per each 25% hot water heating, reduce fuel 15 percent

Residential Heat Pump Profile

HEAT PUMP SATURATION IN SINGLE FAMILY DETACHED DWELLINGS (HOMES)					Weighted Avg All Four	Composite of Town plus Rural
Census Division	City	Suburban	Town	Rural		
New England	0.0	3.5	0.0	1.9	1.4	0.9
Middle Atlantic	0.0	5.4	1.9	4.3	3.5	3.4
East North Central	2.0	0.0	3.7	6.7	2.7	5.5
West North Central	0.0	4.4	8.0	12.0	3.6	5.1
South Atlantic	30.9	41.7	15.1	19.0	28.1	17.5
East South Central	13.7	25.5	8.6	30.1	21.5	24.3
West South Central	5.0	14.0	3.0	11.9	6.7	6.0
Mountain	7.9	10.1	7.4	7.4	8.0	7.4
Pacific	0.9	7.4	4.6	6.5	3.5	5.5
Composite	8.0	13.6	4.9	12.7	9.7	9.1

Saturation of ELECTRIC APPLIANCES AND OTHER APPLICABLE ELEMENTS in the above TOWN PLUS RURAL locations for the above SINGLE FAMILY DWELLINGS THAT USE HEAT PUMPS:

Electric Water Heating	90%
Electric Range	93%
Dishwasher	69%
Electric Dryer	95%
Well Pump	39%
Utility Gas Available	17%
Propane Used	7%

